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Introduction

Many modern statistical analysis and machine learn-
ing applications require training models on sensitive
user data. Differentially private algorithms inject
calibrated noise into the confidential data or dur-
ing the data analysis process to produce privacy-
protected datasets or queries. This work proposes
simulation-based inference methods from privacy-
protected datasets.

Notations

• θ ∈ Θ: model parameter
• π(θ): prior of the model parameter
• x = (x1, · · · , xn) ∈ Xn : confidential database
• f (x | θ): intractable likelihood function as a

‘simulator’
• sdp: differentially private queries for the

confidential database x

Likelihood-free Inference

Given observed dataset xo, how to learn the param-
eter posterior π(θ | xo) ∝ π(θ)f (xo | θ)?
• Approximate Bayesian Computation

(ABC) [1]: Circumvent likelihood evaluations
with simulations.
• Accept θ(i) if d(x(i), xo) < ϵ, where x(i) ∼ f (x | θ(i))
• Depends on distance function d(·, ·); Requires multiple

simulations
• SMC-ABC improves ABC by specifying a sequence of

intermediate target distributions
• Neural density estimation (NDE) [2]:

approximate π(θ | xo) with neural density
{qϕ(θ | x)}ϕ by an architecture q and weight
parameters ϕ.

ϕ̂ = arg min
ϕ

Ep(θ,x) [− log qϕ(θ | x)]
• Training relies on Monte Carlo approximations

Differential Privacy

Let η(sdp | x) be the conditional density of the pri-
vate output sdp given the confidential data x. We
say η satisfies ϵ-DP if, for all possible values of sdp
and for neighboring datasets x, x′,∫

A η(sdp | x) dsdp∫
A η(sdp | x′) dsdp

≤ exp(ϵ), ∀A ⊆ Range(η).

Inference with Privatized Queries

Our goal is to approximate the posterior distribution
of θ given privatized queries sdp.

π(θ | sdp) ∝ π(θ)f (sdp | θ)
∝ π(θ)

∫
Xn

f (x | θ)η(sdp | x)dx

• Intractable f (x | θ) and integration over Xn

• Data-augmentation MCMC methods [3] work
when f (x | θ) is tractable

Our Methods

We present two complementary approaches:
Private data likelihood estimation (PLE):
approximate the private data marginal likelihood
f (sdp | θ). Minimizing

Eπ(θ) [DKL (f (sdp | θ)∥qϕ(sdp | θ))]
is equivalent to minimizing
ℓPLE(ϕ) = Ep(θ,x)

[
−

∫
S

η(sdp | x) log qϕ(sdp | θ)dsdp
]

up to a constant independent of ϕ. The posterior
approximation can be π̂PLE(θ) ∝ π(θ)qϕ̂(sdp | θ).
Private data posterior estimation (PPE):
approximate π(θ | sdp) directly. Minimizing

Eπ(x) [DKL (π(θ | sdp)∥qϕ(θ | sdp))]
is equivalent to minimizing
ℓPPE(ϕ) = Ep(θ,x)

[
−

∫
S

η(sdp | x) log qϕ(θ | sdp)dsdp
]

Nested RQMC Estimators

• The integral in the loss function
I(θ, x) =

∫
η(sdp | x)g(sdp, θ)dsdp

can be approximated with standard Monte Carlo
integration with the root-mean-squared-error
(RMSE) on the order of O(M−1/2).
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• Randomized quasi-Monte Carlo (RQMC) can
generate correlated, low-discrepancy sequences to
reduce the RMSE to O(M−1+δ) under mild
conditions.
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Figure: Rate of convergence of MC and RQMC. The RMSE of
the RQMC method is approximately O(M−1).

Sequential Neural Estimations

• We incorporate the current neural density
estimator qϕ into the proposal distribution of the
next training round

• Sequential training procedures can gradually
move qϕ towards high-density regions of the
private data posterior, and thus achieve good
accuracy with fewer samples from the simulator

Experiments
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Figure: Inference on the SIR model with 1,000 simulations per
round. Top: Convergence of posterior estimations; Bottom:
Approximation accuracy by SPPE (orange) and SPLE (red)
against the number of rounds.

Figure: Posterior comparison on the Bayesian linear regression.
Grey: Ground truth posterior; orange: SPPE; red: SPLE.
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