Simulation-based Bayesian Inference from Privacy Protected Data
Yifei Xiong', Niangiao Phyllis Ju!, Sanguo Zhang”

1Department of Statistics, Purdue University

Summary

‘—» Simula’;or_»( : ——— Statistics

Goal: Infer posterior
(0 | sdp)

Introduction

Many modern statistical analysis and machine learn-
ing applications require training models on sensitive
user data.
calibrated noise into the confidential data or dur-

Differentially private algorithms inject

ing the data analysis process to produce privacy-
protected datasets or queries. This work proposes
simulation-based inference methods from privacy-
protected datasets.

Notations

6 € ©: model parameter

7(0): prior of the model parameter
r=(x, - ,r,) € X":
f(x | 8): intractable likelihood function as a

‘simulator’

confidential database

® sq,: differentially private queries for the
confidential database x

Likelihood-free Inference

Given observed dataset x°, how to learn the param-

eter posterior (6 | x°) o< w(0)f(x° | 0)?

e Approximate Bayesian Computation
(ABC) [1]: Circumvent likelihood evaluations
with simulations.

o Accept 0 if d(2'"), 2°) < €, where ') ~ f(z | §7)
® Depends on distance function d(-, -); Requires multiple
simulations

e SMC-ABC improves ABC by specifying a sequence of
intermediate target distributions

* Neural density estimation (NDE) [2]:
approximate 7(6 | x°) with neural density
{qs(0 | x)}s by an architecture g and weight
parameters o.

A

O = arg qun Co0.0) | —log gs(0 | @),

e Training relies on Monte Carlo approximations

Differential Privacy

Let n(sqp | ©) be the conditional density of the pri-
vate output sq, given the confidential data x. We
say n satisfies e-DP if, for all possible values of sg,

and for neighboring datasets x, 2’
Jan(sap | ) dsqp
Jan(sap | 2') dsap

< exp(e), VA C Range(n).

Inference with Privatized Queries

Our goal is to approximate the posterior distribution
of 0 given privatized queries sqp.

(0 | sap) < 7(0) f(Sap | 0)
o< (0) [y, [ | O)nsay | 2)da
o Intractable f(x | 6) and integration over X"

o Data-augmentation MCMC methods [3] work
when f(x | 6) is tractable

Our Methods

We present two complementary approaches:
Private data likelihood estimation (PLE):
approximate the private data marginal likelihood
f(sap | ). Minimizing

20 [Dit. (F 50y | O)llgo(s0, | 0))

is equivalent to minimizing

lpip(@) = Epg .0 [— /SW(Sdp | ) log gy(sap | ‘9>d3dp]

up to a constant independent of ¢. The posterior
approximation can be 7prg(0) o< 7(0)g;(sqp | 0).
Private data posterior estimation (PPE):
approximate (6 | sq,) directly. Minimizing

2oy [Dit, (7(0 | 50|06 | 50,)]

is equivalent to minimizing

gPPE(¢) — 4:]9((9,513) [_ /Sn(sdp ‘ ZE‘) lOg Q¢(9 ‘ Sdp)dsdp]
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Nested RQMC Estimators

e The integral in the loss function

[(0,r) = /U(Sdp | 2)g(Sdp, 0)dsay

can be approximated with standard Monte Carlo
integration with the root-mean-squared-error

(RMSE) on the order of O(M~1/?).
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e Randomized quasi-Monte Carlo (RQMC) can
oenerate correlated, low-discrepancy sequences to
reduce the RMSE to O(M ~1*) under mild

conditions.

Task: SIR model Task: linear regression

1 —®— MC Slope: -0.4931
] —e— RQMC Slope: -0.8857

3 —®— MC Slope: -0.5039
] —e— RQMC Slope: -0.9682
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Figure: Rate of convergence of MC and RQMC. The RMSE of
the RQMC method is approximately O(M ).

Sequential Neural Estimations

e We incorporate the current neural density
estimator g, into the proposal distribution of the
next training round

e Sequential training procedures can gradually
move ¢, towards high-density regions of the
private data posterior, and thus achieve good
accuracy with fewer samples from the simulator
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Experiments
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Figure: Inference on the SIR model with 1,000 simulations per
round. Top: Convergence of posterior estimations; Bottom:
Approximation accuracy by SPPE (orange) and SPLE (red)

against the number of rounds.
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Figure: Posterior comparison on the Bayesian linear regression.
Grey: Ground truth posterior; orange: SPPE; red: SPLE.
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